Главная » Техническая информация » Термопары

 

Термопара (термоэлектрический преобразователь температуры) — термоэлемент, применяемый в измерительных и преобразовательных устройствах, а также в системах автоматизации.

Международный стандарт на термопары МЭК 60584 (п.2.2) дает следующее определение термопары: Термопара — пара проводников из различных материалов, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковых термопары, соединенных навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

Термопары широко применяют для измерения температуры различных объектов, а также в автоматизированных системах управления и контроля. Измерение температур с помощью термопар получило широкое распространение из-за надежной конструкции датчика, возможности работать в широком диапазоне температур и дешевизны. Широкому применению термопары обязаны в первую очередь своей простоте, удобству монтажа, возможности измерения локальной температуры. Они гораздо более линейны, чем многие другие датчики, а их нелинейность на сегодняшний день хорошо изучена и описана в специальной литературе. К числу достоинств термопар относятся также малая инерционность, возможность измерения малых разностей температур. Термопары незаменимы при измерении высоких температур (вплоть до 2200°С) в агрессивных средах. Термопары могут обеспечивать высокую точность измерения температуры на уровне ±0,01°С. Они вырабатывают на выходе термоЭДС в диапазоне от микровольт до милливольт, однако требуют стабильного усиления для последующей обработки.

 

 

Таблица 1

Тип термо-
пары
Букве-
нное обозна-
чение НСХ*
Материал термоэлектродов Коэффициент термоЭДС, мкв/°С (в диапазоне температур, °С) Диапазон рабочих температур, °С Предельная темпе-
ратура при кратко-
временном приме-
нении, °С
положительного отрицательного
ТЖК J Железо (Fe) Сплав константен (45% Сu + 45% Ni, Mn, Fe) 50-64 (0-800) ОТ -200 до +750 900
ТХА К Сплав хромель (90,5% Ni +9,5% Сr) Сплав алюмель (94,5% Ni + 5,5% Al, Si, Mn, Co) 35-42 (0-1300) от -200 до +1200 1300
ТМК Т Медь (Сu) Сплав константан (55% Си + 45% Ni, Mn, Fe) 40-60 (0-400) от -200 до +350 400
ТХКн Е Сплав хромель (90,5% Ni + 9,5% Сr) Сплав константан (55% Сu + 45% Ni, Mn, Fe) 59-81 (0-600) от-200 до+700 900
ТХК L Сплав хромель (90,5% Ni + 9,5% Сr) Сплав копель (56% Си + 44% Ni} 64-88 (0-600) от -200 до +600 800
ТНН N Сплав никросил (83,49% Ni +13,7% Сr + 1,2% Si+ 0,15% Fe + 0,05% С + 0,01% Mg) Сплав нисил (94,98% Ni + 0,02% Сr + 4,2% Si + 0,15% Fe + 0,05% С + 0,05% Mg) 26-36 (0-1300) от -270 до +1300 1300
ТПП13 R Сплав платина-родий (87%Pt + 13%Rh) платина (Pt) 10-14 (600-1600) от 0 до +1300 1600
ТПП10 S Сплав платина-родий (87% Pt — 13% Rh) платина (Pt) 10-14 (600-1600) от 0 до +1300 1600
ТПР В Сплав платина-родий (70% Pt - 30% Rh} Сплав платина-родий (94% Pt-6%Rh) 10-14(1000-1800) от 600 до+1700 1800
ТВР А-1
А-2
А-3
Сплав вольфрам-рений (95% W - 5% Re) Сплав вольфрам-рений (80% W-20% Re) 14-7 (1300-2500) от 0 до +2200
от 0 до +1800
от 0 до +1800
2500
ТСС I Сплав сильд Сплав силин - от 0 до + 800 900

   Примечание: НСХ — номинальные статические характеристики преобразования по международной классификации ТСС

 

Принцип действия

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Когда концы проводника находятся при разных температурах, между ними возникает разность потенциалов, пропорциональная разности температур. Коэффициент пропорциональности называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.

Способы подключения

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используютcя два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.
Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик:

  • Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
  • Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
  • При использовании длинных удлинительных проводов, во избежании наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
  • По возможности избегать резких температурных градиентов по длине термопары;
  • Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
  • Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
  • Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.


Применение термопар

Для измерения температуры различных типов объектов и сред, а также в автоматизированных системах управления и контроля. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

Преимущества термопар
 

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С)
  • Большой температурный диапазон измерения: от −200 °C до 2500 °C
  • Простота
  • Дешевизна
  • Надежность


Недостатки
 

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний, необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.



Типы термопар

Технические требования к термопарам определяются ГОСТ 6616-94.Стандартные таблицы для термоэлектрических термометров (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.
 

  • платинородий-платиновые — ТПП13 — Тип R
  • платинородий-платиновые — ТПП10 — Тип S
  • платинородий-платинородиевые — ТПР — Тип B
  • железо-константановые (железо-медьникелевые) ТЖК — Тип J
  • медь-константановые (медь-медьникелевые) ТМКн — Тип Т
  • нихросил-нисиловые (никельхромникель-никелькремниевые) ТНН — Тип N.
  • хромель-алюмелевые — ТХА — Тип K
  • хромель-константановые ТХКн — Тип E
  • хромель-копелевые — ТХК — Тип L
  • медь-копелевые — ТМК — Тип М
  • сильх-силиновые — ТСС — Тип I
  • вольфрам и рений — вольфрамрениевые — ТВР — Тип А-1, А-2, А-3



Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. Тип L установлен только в немецком стандарте DIN 43710 и стандартные таблицы отличаются от таблиц для термопар ТХК.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ.

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

 

При выборе термопары для производства замеров температуры в некотором диапазоне следует выбирать ту термопару, коэффициент линейности которой изменяется менее других в рамках этого диапазона. Для достижения высокой точности измерений термопарного термометра во всем диапазоне рабочих температур необходима его калибровка. В ГОСТ 50431-92 «Термопары» приведены вид и порядок полинома, а также коэффициенты полиноминальной аппроксимации зависимости выходного напряжения термопар от температуры, которые определяются по градуировоч-ным таблицам для каждого типа термопар.

   В табл. 2 приведены особенности и области применения некоторых типов термопар.

Таблица 2

Тип термопары Особенности применения
ТХА Обладают: — наиболее близкой к прямой характеристикой. Предназначены для работы в окислительных и инертных средах
ТХК Обладают: — наибольшей чувствительностью;
— высокой термоэлектрической стабильностью при температурах до 600°С.
Предназначены для работы в окислительных и инертных средах.
Недостаток: высокая чувствительность к деформациям
ТПП Обладают: — хорошей устойчивостью к газовой коррозии, особенно на воздухе при высоких температурах;
— высокой надежностью при работе в вакууме (но менее стабильны в нейтральных средах).
Предназначены для длительной эксплуатации в окислительных средах.
Недостаток: высокая чувствительность термоэлектродов к любым загрязнениям, появившимся при изготовлении, монтаже или эксплуатации термопар
ТВР Обладают: — возможностью длительного применения при температурах до 22О0°С в неокислительных средах;
— устойчивостью в аргоне, гелии, сухом водороде и азоте.
Термопары с термоэлектродами из сплава платины с 10% родия относительно электрода из чистой платины могут использоваться как стандартные для установления номинальных статических характеристик термопар методом сравнения.
Недостаток - плохая воспроизводимость термоЭДС, вынуждающая группировать термоэлектродные пары по группам с номинальными статическими характеристиками А-1, А-2, А-3
ТНН Обладают: — высокой стабильностью термоЭДС (по сравнению с термопарами ТХА, ТПП, ТПР);
— высокой радиационной стойкостью;
— высокой стойкостью к окислению электродов.
Предназначены в качестве универсального средства измерения температур в диапазоне температур 0-1230°С

   В зависимости от конструкции и назначения различают термопары погружаемые и поверхностные; с обыкновенной, взрывобезопасной, влагонепроницаемой или иной оболочкой (герметичной или негерметичной), а также без оболочки; обыкновенные, вибротряскоустойчивые и ударопрочные; стационарные и переносные и т.д.

 

С сожалением сообщаем нашим клиентам о том, что с 2022-го года в связи с геополитическими событиями в мире WIKA Group приняла решение приостановить свою деятельность в России до дальнейшего уведомления.
В настоящее время мы предоставляем подбор аналогов продукции WIKA на других иностранных и/или российских производителей.
Также осуществляем импортозамещение ушедших с рынка иностранных компаний в области промышленного производства и КИП.

Наличие, сроки поставки, цену на товар "Термопары" Вы можете уточнить у наших менеджеров по тел. +7 343 382 32 13 или отправив заявку на электронную почту info@kip-e.ru, а также заполнить заказ клиента ниже:

Имя отправителя *:
E-mail отправителя *:
Контактный телефон *:
Название организации:
Web-site:
Тема письма:
Текст сообщения *:

Яндекс.Метрика